Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{6}+0+2x^{4}+0x^{3}-x^{2}+0x+\frac{0}{x}+1
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{6}+0+2x^{4}+0-x^{2}+0x+\frac{0}{x}+1
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{6}+2x^{4}-x^{2}+0x+\frac{0}{x}+1
Tāpirihia te 0 ki te 0, ka 0.
x^{6}+2x^{4}-x^{2}+0+\frac{0}{x}+1
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{6}+2x^{4}-x^{2}+0+0+1
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.
x^{6}+2x^{4}-x^{2}+1
Tāpirihia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+0+2x^{4}+0x^{3}-x^{2}+0x+\frac{0}{x}+1)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+0+2x^{4}+0-x^{2}+0x+\frac{0}{x}+1)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{4}-x^{2}+0x+\frac{0}{x}+1)
Tāpirihia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{4}-x^{2}+0+\frac{0}{x}+1)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{4}-x^{2}+0+0+1)
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{4}-x^{2}+1)
Tāpirihia te 0 ki te 0, ka 0.
6x^{6-1}+4\times 2x^{4-1}+2\left(-1\right)x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
6x^{5}+4\times 2x^{4-1}+2\left(-1\right)x^{2-1}
Tango 1 mai i 6.
6x^{5}+8x^{4-1}+2\left(-1\right)x^{2-1}
Whakareatia 4 ki te 2.
6x^{5}+8x^{3}+2\left(-1\right)x^{2-1}
Tango 1 mai i 4.
6x^{5}+8x^{3}-2x^{2-1}
Whakareatia 4 ki te 2.
6x^{5}+8x^{3}-2x^{1}
Tango 1 mai i 2.
6x^{5}+8x^{3}-2x
Mō tētahi kupu t, t^{1}=t.