Tauwehe
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Aromātai
x^{5}-x^{3}+27x^{2}-27
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}\left(x^{2}-1\right)+27\left(x^{2}-1\right)
Mahia te whakarōpūtanga x^{5}-x^{3}+27x^{2}-27=\left(x^{5}-x^{3}\right)+\left(27x^{2}-27\right), ka whakatauwehea atu x^{3} i te tuatahi me 27 i te rōpū tuarua.
\left(x^{2}-1\right)\left(x^{3}+27\right)
Whakatauwehea atu te kīanga pātahi x^{2}-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-1\right)\left(x+1\right)
Whakaarohia te x^{2}-1. Tuhia anō te x^{2}-1 hei x^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x+3\right)\left(x^{2}-3x+9\right)
Whakaarohia te x^{3}+27. Tuhia anō te x^{3}+27 hei x^{3}+3^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore te pūrau x^{2}-3x+9 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}