Tauwehe
\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)
Aromātai
x^{4}+x^{3}-x-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(x^{3}-1\right)+x^{3}-1
Mahia te whakarōpūtanga x^{4}-x+x^{3}-1=\left(x^{4}-x\right)+\left(x^{3}-1\right), ka whakatauwehea atu x i te x^{4}-x.
\left(x^{3}-1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x^{3}-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-1\right)\left(x^{2}+x+1\right)
Whakaarohia te x^{3}-1. Tuhia anō te x^{3}-1 hei x^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore te pūrau x^{2}+x+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}