Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-6t-27=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\left(-27\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te -27 mō te c i te ture pūrua.
t=\frac{6±12}{2}
Mahia ngā tātaitai.
t=9 t=-3
Whakaotia te whārite t=\frac{6±12}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-3 x=3 x=-\sqrt{3}i x=\sqrt{3}i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
t^{2}-6t-27=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\left(-27\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te -27 mō te c i te ture pūrua.
t=\frac{6±12}{2}
Mahia ngā tātaitai.
t=9 t=-3
Whakaotia te whārite t=\frac{6±12}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=3 x=-3
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.