Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-24t+144=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 1\times 144}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -24 mō te b, me te 144 mō te c i te ture pūrua.
t=\frac{24±0}{2}
Mahia ngā tātaitai.
t=12
He ōrite ngā whakatau.
x=-2\sqrt{3} x=2\sqrt{3}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.