Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-2t-1=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te -1 mō te c i te ture pūrua.
t=\frac{2±2\sqrt{2}}{2}
Mahia ngā tātaitai.
t=\sqrt{2}+1 t=1-\sqrt{2}
Whakaotia te whārite t=\frac{2±2\sqrt{2}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt{\sqrt{2}+1} x=\sqrt{\sqrt{2}+1} x=-i\sqrt{-\left(1-\sqrt{2}\right)} x=i\sqrt{-\left(1-\sqrt{2}\right)}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
t^{2}-2t-1=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te -1 mō te c i te ture pūrua.
t=\frac{2±2\sqrt{2}}{2}
Mahia ngā tātaitai.
t=\sqrt{2}+1 t=1-\sqrt{2}
Whakaotia te whārite t=\frac{2±2\sqrt{2}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt{\sqrt{2}+1} x=-\sqrt{\sqrt{2}+1}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.