Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-16t-225=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\left(-225\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -16 mō te b, me te -225 mō te c i te ture pūrua.
t=\frac{16±34}{2}
Mahia ngā tātaitai.
t=25 t=-9
Whakaotia te whārite t=\frac{16±34}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-5 x=5 x=-3i x=3i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
t^{2}-16t-225=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\left(-225\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -16 mō te b, me te -225 mō te c i te ture pūrua.
t=\frac{16±34}{2}
Mahia ngā tātaitai.
t=25 t=-9
Whakaotia te whārite t=\frac{16±34}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=5 x=-5
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.