Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{4}=4x^{2}-12x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
x^{4}-4x^{2}=-12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
x^{4}-4x^{2}+12x=9
Me tāpiri te 12x ki ngā taha e rua.
x^{4}-4x^{2}+12x-9=0
Tangohia te 9 mai i ngā taha e rua.
±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -9, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+x^{2}-3x+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}-4x^{2}+12x-9 ki te x-1, kia riro ko x^{3}+x^{2}-3x+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 9, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-2x+3=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+x^{2}-3x+9 ki te x+3, kia riro ko x^{2}-2x+3. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te 3 mō te c i te ture pūrua.
x=\frac{2±\sqrt{-8}}{2}
Mahia ngā tātaitai.
x=-\sqrt{2}i+1 x=1+\sqrt{2}i
Whakaotia te whārite x^{2}-2x+3=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-3 x=-\sqrt{2}i+1 x=1+\sqrt{2}i
Rārangitia ngā otinga katoa i kitea.
x^{4}=4x^{2}-12x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
x^{4}-4x^{2}=-12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
x^{4}-4x^{2}+12x=9
Me tāpiri te 12x ki ngā taha e rua.
x^{4}-4x^{2}+12x-9=0
Tangohia te 9 mai i ngā taha e rua.
±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -9, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+x^{2}-3x+9=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}-4x^{2}+12x-9 ki te x-1, kia riro ko x^{3}+x^{2}-3x+9. Whakaotihia te whārite ina ōrite te hua ki te 0.
±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 9, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-2x+3=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+x^{2}-3x+9 ki te x+3, kia riro ko x^{2}-2x+3. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te 3 mō te c i te ture pūrua.
x=\frac{2±\sqrt{-8}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=1 x=-3
Rārangitia ngā otinga katoa i kitea.