Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}\left(y^{3}-1\right)-\left(y^{3}-1\right)
Mahia te whakarōpūtanga x^{3}y^{3}-x^{3}-y^{3}+1=\left(x^{3}y^{3}-x^{3}\right)+\left(-y^{3}+1\right), ka whakatauwehea atu x^{3} i te tuatahi me -1 i te rōpū tuarua.
\left(y^{3}-1\right)\left(x^{3}-1\right)
Whakatauwehea atu te kīanga pātahi y^{3}-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(y-1\right)\left(y^{2}+y+1\right)
Whakaarohia te y^{3}-1. Tuhia anō te y^{3}-1 hei y^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(x^{2}+x+1\right)
Whakaarohia te x^{3}-1. Tuhia anō te x^{3}-1 hei x^{3}-1^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(y-1\right)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: x^{2}+x+1,y^{2}+y+1.