Whakaoti mō p (complex solution)
\left\{\begin{matrix}p=\frac{x^{3}-q}{x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&q=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō p
\left\{\begin{matrix}p=\frac{x^{3}-q}{x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }q=0\end{matrix}\right.
Whakaoti mō q
q=x\left(x^{2}-p\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
-px-q=-x^{3}
Tangohia te x^{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-px=-x^{3}+q
Me tāpiri te q ki ngā taha e rua.
\left(-x\right)p=q-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)p}{-x}=\frac{q-x^{3}}{-x}
Whakawehea ngā taha e rua ki te -x.
p=\frac{q-x^{3}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
p=x^{2}-\frac{q}{x}
Whakawehe q-x^{3} ki te -x.
-px-q=-x^{3}
Tangohia te x^{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-px=-x^{3}+q
Me tāpiri te q ki ngā taha e rua.
\left(-x\right)p=q-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)p}{-x}=\frac{q-x^{3}}{-x}
Whakawehea ngā taha e rua ki te -x.
p=\frac{q-x^{3}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
p=x^{2}-\frac{q}{x}
Whakawehe -x^{3}+q ki te -x.
-px-q=-x^{3}
Tangohia te x^{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-q=-x^{3}+px
Me tāpiri te px ki ngā taha e rua.
-q=px-x^{3}
He hanga arowhānui tō te whārite.
\frac{-q}{-1}=\frac{x\left(p-x^{2}\right)}{-1}
Whakawehea ngā taha e rua ki te -1.
q=\frac{x\left(p-x^{2}\right)}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
q=x^{3}-px
Whakawehe x\left(-x^{2}+p\right) ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}