Whakaoti mō x
x=\frac{\sqrt{281}+1}{20}\approx 0.888152731
x=\frac{1-\sqrt{281}}{20}\approx -0.788152731
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}-7x^{2}+5=x^{3}-x+3x^{2}-2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x^{2}-1.
x^{3}-7x^{2}+5-x^{3}=-x+3x^{2}-2
Tangohia te x^{3} mai i ngā taha e rua.
-7x^{2}+5=-x+3x^{2}-2
Pahekotia te x^{3} me -x^{3}, ka 0.
-7x^{2}+5+x=3x^{2}-2
Me tāpiri te x ki ngā taha e rua.
-7x^{2}+5+x-3x^{2}=-2
Tangohia te 3x^{2} mai i ngā taha e rua.
-10x^{2}+5+x=-2
Pahekotia te -7x^{2} me -3x^{2}, ka -10x^{2}.
-10x^{2}+5+x+2=0
Me tāpiri te 2 ki ngā taha e rua.
-10x^{2}+7+x=0
Tāpirihia te 5 ki te 2, ka 7.
-10x^{2}+x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-10\right)\times 7}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 1 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-10\right)\times 7}}{2\left(-10\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+40\times 7}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-1±\sqrt{1+280}}{2\left(-10\right)}
Whakareatia 40 ki te 7.
x=\frac{-1±\sqrt{281}}{2\left(-10\right)}
Tāpiri 1 ki te 280.
x=\frac{-1±\sqrt{281}}{-20}
Whakareatia 2 ki te -10.
x=\frac{\sqrt{281}-1}{-20}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{281}}{-20} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{281}.
x=\frac{1-\sqrt{281}}{20}
Whakawehe -1+\sqrt{281} ki te -20.
x=\frac{-\sqrt{281}-1}{-20}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{281}}{-20} ina he tango te ±. Tango \sqrt{281} mai i -1.
x=\frac{\sqrt{281}+1}{20}
Whakawehe -1-\sqrt{281} ki te -20.
x=\frac{1-\sqrt{281}}{20} x=\frac{\sqrt{281}+1}{20}
Kua oti te whārite te whakatau.
x^{3}-7x^{2}+5=x^{3}-x+3x^{2}-2
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x^{2}-1.
x^{3}-7x^{2}+5-x^{3}=-x+3x^{2}-2
Tangohia te x^{3} mai i ngā taha e rua.
-7x^{2}+5=-x+3x^{2}-2
Pahekotia te x^{3} me -x^{3}, ka 0.
-7x^{2}+5+x=3x^{2}-2
Me tāpiri te x ki ngā taha e rua.
-7x^{2}+5+x-3x^{2}=-2
Tangohia te 3x^{2} mai i ngā taha e rua.
-10x^{2}+5+x=-2
Pahekotia te -7x^{2} me -3x^{2}, ka -10x^{2}.
-10x^{2}+x=-2-5
Tangohia te 5 mai i ngā taha e rua.
-10x^{2}+x=-7
Tangohia te 5 i te -2, ka -7.
\frac{-10x^{2}+x}{-10}=-\frac{7}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{1}{-10}x=-\frac{7}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-\frac{1}{10}x=-\frac{7}{-10}
Whakawehe 1 ki te -10.
x^{2}-\frac{1}{10}x=\frac{7}{10}
Whakawehe -7 ki te -10.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\frac{7}{10}+\left(-\frac{1}{20}\right)^{2}
Whakawehea te -\frac{1}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{20}. Nā, tāpiria te pūrua o te -\frac{1}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{7}{10}+\frac{1}{400}
Pūruatia -\frac{1}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{281}{400}
Tāpiri \frac{7}{10} ki te \frac{1}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{20}\right)^{2}=\frac{281}{400}
Tauwehea x^{2}-\frac{1}{10}x+\frac{1}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{281}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{20}=\frac{\sqrt{281}}{20} x-\frac{1}{20}=-\frac{\sqrt{281}}{20}
Whakarūnātia.
x=\frac{\sqrt{281}+1}{20} x=\frac{1-\sqrt{281}}{20}
Me tāpiri \frac{1}{20} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}