Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-3\right)\left(x^{2}+x-2\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 6, ā, ka wehea e q te whakarea arahanga 1. Ko tetahi pūtake pērā ko 3. Tauwehea te pūrau mā te whakawehe mā te x-3.
a+b=1 ab=1\left(-2\right)=-2
Whakaarohia te x^{2}+x-2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(2x-2\right)
Tuhia anō te x^{2}+x-2 hei \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-1\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-3\right)\left(x-1\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.