Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-10x^{2}+24x-14+2
Pahekotia te 23x me x, ka 24x.
x^{3}-10x^{2}+24x-12
Tāpirihia te -14 ki te 2, ka -12.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-10x^{2}+24x-14+2)
Pahekotia te 23x me x, ka 24x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-10x^{2}+24x-12)
Tāpirihia te -14 ki te 2, ka -12.
3x^{3-1}+2\left(-10\right)x^{2-1}+24x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
3x^{2}+2\left(-10\right)x^{2-1}+24x^{1-1}
Tango 1 mai i 3.
3x^{2}-20x^{2-1}+24x^{1-1}
Whakareatia 2 ki te -10.
3x^{2}-20x^{1}+24x^{1-1}
Tango 1 mai i 2.
3x^{2}-20x^{1}+24x^{0}
Tango 1 mai i 1.
3x^{2}-20x+24x^{0}
Mō tētahi kupu t, t^{1}=t.
3x^{2}-20x+24\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
3x^{2}-20x+24
Mō tētahi kupu t, t\times 1=t me 1t=t.