Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}+3x^{2}-81x=243
Tangohia te 81x mai i ngā taha e rua.
x^{3}+3x^{2}-81x-243=0
Tangohia te 243 mai i ngā taha e rua.
±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -243, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+3x^{2}-81x-243 ki te x+3, kia riro ko x^{2}-81. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-81\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te -81 mō te c i te ture pūrua.
x=\frac{0±18}{2}
Mahia ngā tātaitai.
x=-9 x=9
Whakaotia te whārite x^{2}-81=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-3 x=-9 x=9
Rārangitia ngā otinga katoa i kitea.