Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3px^{2}+3qx+r=-x^{3}
Tangohia te x^{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3px^{2}+r=-x^{3}-3qx
Tangohia te 3qx mai i ngā taha e rua.
3px^{2}=-x^{3}-3qx-r
Tangohia te r mai i ngā taha e rua.
3x^{2}p=-x^{3}-3qx-r
He hanga arowhānui tō te whārite.
\frac{3x^{2}p}{3x^{2}}=\frac{-x^{3}-3qx-r}{3x^{2}}
Whakawehea ngā taha e rua ki te 3x^{2}.
p=\frac{-x^{3}-3qx-r}{3x^{2}}
Mā te whakawehe ki te 3x^{2} ka wetekia te whakareanga ki te 3x^{2}.
p=-\frac{qx+\frac{r}{3}}{x^{2}}-\frac{x}{3}
Whakawehe -x^{3}-3qx-r ki te 3x^{2}.
3px^{2}+3qx+r=-x^{3}
Tangohia te x^{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3qx+r=-x^{3}-3px^{2}
Tangohia te 3px^{2} mai i ngā taha e rua.
3qx=-x^{3}-3px^{2}-r
Tangohia te r mai i ngā taha e rua.
3xq=-x^{3}-3px^{2}-r
He hanga arowhānui tō te whārite.
\frac{3xq}{3x}=\frac{-x^{3}-3px^{2}-r}{3x}
Whakawehea ngā taha e rua ki te 3x.
q=\frac{-x^{3}-3px^{2}-r}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
q=-px-\frac{x^{2}}{3}-\frac{r}{3x}
Whakawehe -x^{3}-3px^{2}-r ki te 3x.