Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{3}x^{2}-xy-\left(-\frac{2}{3}xy-\frac{7}{3}xy\right)-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Pahekotia te x^{2} me -\frac{1}{3}x^{2}, ka \frac{2}{3}x^{2}.
\frac{2}{3}x^{2}-xy-\left(-3xy\right)-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Pahekotia te -\frac{2}{3}xy me -\frac{7}{3}xy, ka -3xy.
\frac{2}{3}x^{2}-xy+3xy-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Ko te tauaro o -3xy ko 3xy.
\frac{2}{3}x^{2}-xy+3xy-\left(-x\right)y+\frac{1}{3}x^{2}
Pahekotia te \frac{1}{2}x^{2} me -\frac{1}{6}x^{2}, ka \frac{1}{3}x^{2}.
\frac{2}{3}x^{2}+2xy-\left(-x\right)y+\frac{1}{3}x^{2}
Pahekotia te -xy me 3xy, ka 2xy.
\frac{2}{3}x^{2}+2xy+xy+\frac{1}{3}x^{2}
Whakareatia te -1 ki te -1, ka 1.
\frac{2}{3}x^{2}+3xy+\frac{1}{3}x^{2}
Pahekotia te 2xy me xy, ka 3xy.
x^{2}+3xy
Pahekotia te \frac{2}{3}x^{2} me \frac{1}{3}x^{2}, ka x^{2}.
\frac{2}{3}x^{2}-xy-\left(-\frac{2}{3}xy-\frac{7}{3}xy\right)-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Pahekotia te x^{2} me -\frac{1}{3}x^{2}, ka \frac{2}{3}x^{2}.
\frac{2}{3}x^{2}-xy-\left(-3xy\right)-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Pahekotia te -\frac{2}{3}xy me -\frac{7}{3}xy, ka -3xy.
\frac{2}{3}x^{2}-xy+3xy-\left(-x\right)y+\frac{1}{2}x^{2}-\frac{1}{6}x^{2}
Ko te tauaro o -3xy ko 3xy.
\frac{2}{3}x^{2}-xy+3xy-\left(-x\right)y+\frac{1}{3}x^{2}
Pahekotia te \frac{1}{2}x^{2} me -\frac{1}{6}x^{2}, ka \frac{1}{3}x^{2}.
\frac{2}{3}x^{2}+2xy-\left(-x\right)y+\frac{1}{3}x^{2}
Pahekotia te -xy me 3xy, ka 2xy.
\frac{2}{3}x^{2}+2xy+xy+\frac{1}{3}x^{2}
Whakareatia te -1 ki te -1, ka 1.
\frac{2}{3}x^{2}+3xy+\frac{1}{3}x^{2}
Pahekotia te 2xy me xy, ka 3xy.
x^{2}+3xy
Pahekotia te \frac{2}{3}x^{2} me \frac{1}{3}x^{2}, ka x^{2}.