Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x-16=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-16\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te -16 mō te c i te ture pūrua.
x=\frac{1±\sqrt{65}}{2}
Mahia ngā tātaitai.
x=\frac{\sqrt{65}+1}{2} x=\frac{1-\sqrt{65}}{2}
Whakaotia te whārite x=\frac{1±\sqrt{65}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-\frac{\sqrt{65}+1}{2}\right)\left(x-\frac{1-\sqrt{65}}{2}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{65}+1}{2}>0 x-\frac{1-\sqrt{65}}{2}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\frac{\sqrt{65}+1}{2} me te x-\frac{1-\sqrt{65}}{2}. Whakaarohia te tauira ina he tōrunga te x-\frac{\sqrt{65}+1}{2} he tōraro te x-\frac{1-\sqrt{65}}{2}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\frac{1-\sqrt{65}}{2}>0 x-\frac{\sqrt{65}+1}{2}<0
Whakaarohia te tauira ina he tōrunga te x-\frac{1-\sqrt{65}}{2} he tōraro te x-\frac{\sqrt{65}+1}{2}.
x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right).
x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.