Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x+12-2x^{2}=3x+7
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-x+12=3x+7
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-x+12-3x=7
Tangohia te 3x mai i ngā taha e rua.
-x^{2}-4x+12=7
Pahekotia te -x me -3x, ka -4x.
-x^{2}-4x+12-7=0
Tangohia te 7 mai i ngā taha e rua.
-x^{2}-4x+5=0
Tangohia te 7 i te 12, ka 5.
a+b=-4 ab=-5=-5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-5x+5\right)
Tuhia anō te -x^{2}-4x+5 hei \left(-x^{2}+x\right)+\left(-5x+5\right).
x\left(-x+1\right)+5\left(-x+1\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(-x+1\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-5
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+5=0.
x^{2}-x+12-2x^{2}=3x+7
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-x+12=3x+7
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-x+12-3x=7
Tangohia te 3x mai i ngā taha e rua.
-x^{2}-4x+12=7
Pahekotia te -x me -3x, ka -4x.
-x^{2}-4x+12-7=0
Tangohia te 7 mai i ngā taha e rua.
-x^{2}-4x+5=0
Tangohia te 7 i te 12, ka 5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 5}}{2\left(-1\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2\left(-1\right)}
Tāpiri 16 ki te 20.
x=\frac{-\left(-4\right)±6}{2\left(-1\right)}
Tuhia te pūtakerua o te 36.
x=\frac{4±6}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±6}{-2}
Whakareatia 2 ki te -1.
x=\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{4±6}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 6.
x=-5
Whakawehe 10 ki te -2.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{4±6}{-2} ina he tango te ±. Tango 6 mai i 4.
x=1
Whakawehe -2 ki te -2.
x=-5 x=1
Kua oti te whārite te whakatau.
x^{2}-x+12-2x^{2}=3x+7
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-x+12=3x+7
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-x+12-3x=7
Tangohia te 3x mai i ngā taha e rua.
-x^{2}-4x+12=7
Pahekotia te -x me -3x, ka -4x.
-x^{2}-4x=7-12
Tangohia te 12 mai i ngā taha e rua.
-x^{2}-4x=-5
Tangohia te 12 i te 7, ka -5.
\frac{-x^{2}-4x}{-1}=-\frac{5}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=-\frac{5}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=5
Whakawehe -5 ki te -1.
x^{2}+4x+2^{2}=5+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=5+4
Pūrua 2.
x^{2}+4x+4=9
Tāpiri 5 ki te 4.
\left(x+2\right)^{2}=9
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=3 x+2=-3
Whakarūnātia.
x=1 x=-5
Me tango 2 mai i ngā taha e rua o te whārite.