Whakaoti mō m
m=x+\frac{21}{x}
x\neq 0
Whakaoti mō x (complex solution)
x=\frac{\sqrt{m^{2}-84}+m}{2}
x=\frac{-\sqrt{m^{2}-84}+m}{2}
Whakaoti mō x
x=\frac{\sqrt{m^{2}-84}+m}{2}
x=\frac{-\sqrt{m^{2}-84}+m}{2}\text{, }|m|\geq 2\sqrt{21}
Graph
Pātaitai
Algebra
x ^ { 2 } - m x + 21 = 0
Tohaina
Kua tāruatia ki te papatopenga
-mx+21=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-mx=-x^{2}-21
Tangohia te 21 mai i ngā taha e rua.
\left(-x\right)m=-x^{2}-21
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)m}{-x}=\frac{-x^{2}-21}{-x}
Whakawehea ngā taha e rua ki te -x.
m=\frac{-x^{2}-21}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
m=x+\frac{21}{x}
Whakawehe -x^{2}-21 ki te -x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}