Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-8x-48=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-48\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -8 mō te b, me te -48 mō te c i te ture pūrua.
x=\frac{8±16}{2}
Mahia ngā tātaitai.
x=12 x=-4
Whakaotia te whārite x=\frac{8±16}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-12\right)\left(x+4\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-12\leq 0 x+4\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te x-12 me te x+4. Whakaarohia te tauira ina he ≤0 tahi te x-12 me te x+4.
x\leq -4
Te otinga e whakaea i ngā koreōrite e rua ko x\leq -4.
x+4\geq 0 x-12\geq 0
Whakaarohia te tauira ina he ≥0 tahi te x-12 me te x+4.
x\geq 12
Te otinga e whakaea i ngā koreōrite e rua ko x\geq 12.
x\leq -4\text{; }x\geq 12
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.