Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-8x+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-20}}{2}
Whakareatia -4 ki te 5.
x=\frac{-\left(-8\right)±\sqrt{44}}{2}
Tāpiri 64 ki te -20.
x=\frac{-\left(-8\right)±2\sqrt{11}}{2}
Tuhia te pūtakerua o te 44.
x=\frac{8±2\sqrt{11}}{2}
Ko te tauaro o -8 ko 8.
x=\frac{2\sqrt{11}+8}{2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{11}}{2} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{11}.
x=\sqrt{11}+4
Whakawehe 8+2\sqrt{11} ki te 2.
x=\frac{8-2\sqrt{11}}{2}
Nā, me whakaoti te whārite x=\frac{8±2\sqrt{11}}{2} ina he tango te ±. Tango 2\sqrt{11} mai i 8.
x=4-\sqrt{11}
Whakawehe 8-2\sqrt{11} ki te 2.
x^{2}-8x+5=\left(x-\left(\sqrt{11}+4\right)\right)\left(x-\left(4-\sqrt{11}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4+\sqrt{11} mō te x_{1} me te 4-\sqrt{11} mō te x_{2}.