Whakaoti mō x
x=3
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-8 ab=15
Hei whakaoti i te whārite, whakatauwehea te x^{2}-8x+15 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x-5\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x-3=0.
a+b=-8 ab=1\times 15=15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Tuhia anō te x^{2}-8x+15 hei \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-5\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x-3=0.
x^{2}-8x+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Whakareatia -4 ki te 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Tāpiri 64 ki te -60.
x=\frac{-\left(-8\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{8±2}{2}
Ko te tauaro o -8 ko 8.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{8±2}{2} ina he tāpiri te ±. Tāpiri 8 ki te 2.
x=5
Whakawehe 10 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{8±2}{2} ina he tango te ±. Tango 2 mai i 8.
x=3
Whakawehe 6 ki te 2.
x=5 x=3
Kua oti te whārite te whakatau.
x^{2}-8x+15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-8x+15-15=-15
Me tango 15 mai i ngā taha e rua o te whārite.
x^{2}-8x=-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-15+16
Pūrua -4.
x^{2}-8x+16=1
Tāpiri -15 ki te 16.
\left(x-4\right)^{2}=1
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=1 x-4=-1
Whakarūnātia.
x=5 x=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}