Whakaoti mō x
x = \frac{\sqrt{401} + 21}{2} \approx 20.512492197
x=\frac{21-\sqrt{401}}{2}\approx 0.487507803
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-8x+10-13x=0
Tangohia te 13x mai i ngā taha e rua.
x^{2}-21x+10=0
Pahekotia te -8x me -13x, ka -21x.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -21 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 10}}{2}
Pūrua -21.
x=\frac{-\left(-21\right)±\sqrt{441-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-\left(-21\right)±\sqrt{401}}{2}
Tāpiri 441 ki te -40.
x=\frac{21±\sqrt{401}}{2}
Ko te tauaro o -21 ko 21.
x=\frac{\sqrt{401}+21}{2}
Nā, me whakaoti te whārite x=\frac{21±\sqrt{401}}{2} ina he tāpiri te ±. Tāpiri 21 ki te \sqrt{401}.
x=\frac{21-\sqrt{401}}{2}
Nā, me whakaoti te whārite x=\frac{21±\sqrt{401}}{2} ina he tango te ±. Tango \sqrt{401} mai i 21.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Kua oti te whārite te whakatau.
x^{2}-8x+10-13x=0
Tangohia te 13x mai i ngā taha e rua.
x^{2}-21x+10=0
Pahekotia te -8x me -13x, ka -21x.
x^{2}-21x=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-10+\left(-\frac{21}{2}\right)^{2}
Whakawehea te -21, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{21}{2}. Nā, tāpiria te pūrua o te -\frac{21}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-21x+\frac{441}{4}=-10+\frac{441}{4}
Pūruatia -\frac{21}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-21x+\frac{441}{4}=\frac{401}{4}
Tāpiri -10 ki te \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{401}{4}
Tauwehea x^{2}-21x+\frac{441}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{21}{2}=\frac{\sqrt{401}}{2} x-\frac{21}{2}=-\frac{\sqrt{401}}{2}
Whakarūnātia.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Me tāpiri \frac{21}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}