Whakaoti mō x
x=-4
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-6 ab=-40
Hei whakaoti i te whārite, whakatauwehea te x^{2}-6x-40 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-40 2,-20 4,-10 5,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Tātaihia te tapeke mō ia takirua.
a=-10 b=4
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x-10\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=10 x=-4
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+4=0.
a+b=-6 ab=1\left(-40\right)=-40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-40 2,-20 4,-10 5,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Tātaihia te tapeke mō ia takirua.
a=-10 b=4
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-10x\right)+\left(4x-40\right)
Tuhia anō te x^{2}-6x-40 hei \left(x^{2}-10x\right)+\left(4x-40\right).
x\left(x-10\right)+4\left(x-10\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-10\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=-4
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+4=0.
x^{2}-6x-40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-40\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-40\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2}
Whakareatia -4 ki te -40.
x=\frac{-\left(-6\right)±\sqrt{196}}{2}
Tāpiri 36 ki te 160.
x=\frac{-\left(-6\right)±14}{2}
Tuhia te pūtakerua o te 196.
x=\frac{6±14}{2}
Ko te tauaro o -6 ko 6.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{6±14}{2} ina he tāpiri te ±. Tāpiri 6 ki te 14.
x=10
Whakawehe 20 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{6±14}{2} ina he tango te ±. Tango 14 mai i 6.
x=-4
Whakawehe -8 ki te 2.
x=10 x=-4
Kua oti te whārite te whakatau.
x^{2}-6x-40=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-6x-40-\left(-40\right)=-\left(-40\right)
Me tāpiri 40 ki ngā taha e rua o te whārite.
x^{2}-6x=-\left(-40\right)
Mā te tango i te -40 i a ia ake anō ka toe ko te 0.
x^{2}-6x=40
Tango -40 mai i 0.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=40+9
Pūrua -3.
x^{2}-6x+9=49
Tāpiri 40 ki te 9.
\left(x-3\right)^{2}=49
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=7 x-3=-7
Whakarūnātia.
x=10 x=-4
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}