Whakaoti mō x
x=-12
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-6x-2x^{2}=6x
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-6x=6x
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-6x-6x=0
Tangohia te 6x mai i ngā taha e rua.
-x^{2}-12x=0
Pahekotia te -6x me -6x, ka -12x.
x\left(-x-12\right)=0
Tauwehea te x.
x=0 x=-12
Hei kimi otinga whārite, me whakaoti te x=0 me te -x-12=0.
x^{2}-6x-2x^{2}=6x
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-6x=6x
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-6x-6x=0
Tangohia te 6x mai i ngā taha e rua.
-x^{2}-12x=0
Pahekotia te -6x me -6x, ka -12x.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -12 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-12\right)^{2}.
x=\frac{12±12}{2\left(-1\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±12}{-2}
Whakareatia 2 ki te -1.
x=\frac{24}{-2}
Nā, me whakaoti te whārite x=\frac{12±12}{-2} ina he tāpiri te ±. Tāpiri 12 ki te 12.
x=-12
Whakawehe 24 ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{12±12}{-2} ina he tango te ±. Tango 12 mai i 12.
x=0
Whakawehe 0 ki te -2.
x=-12 x=0
Kua oti te whārite te whakatau.
x^{2}-6x-2x^{2}=6x
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-6x=6x
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-6x-6x=0
Tangohia te 6x mai i ngā taha e rua.
-x^{2}-12x=0
Pahekotia te -6x me -6x, ka -12x.
\frac{-x^{2}-12x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{12}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+12x=\frac{0}{-1}
Whakawehe -12 ki te -1.
x^{2}+12x=0
Whakawehe 0 ki te -1.
x^{2}+12x+6^{2}=6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=36
Pūrua 6.
\left(x+6\right)^{2}=36
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=6 x+6=-6
Whakarūnātia.
x=0 x=-12
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}