Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-6 ab=1\times 8=8
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-4 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Tuhia anō te x^{2}-6x+8 hei \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-4\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-6x+8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Whakareatia -4 ki te 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Tāpiri 36 ki te -32.
x=\frac{-\left(-6\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{6±2}{2}
Ko te tauaro o -6 ko 6.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{6±2}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2.
x=4
Whakawehe 8 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{6±2}{2} ina he tango te ±. Tango 2 mai i 6.
x=2
Whakawehe 4 ki te 2.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te 2 mō te x_{2}.