Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-6x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2}
Whakareatia -4 ki te 6.
x=\frac{-\left(-6\right)±\sqrt{12}}{2}
Tāpiri 36 ki te -24.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{6±2\sqrt{3}}{2}
Ko te tauaro o -6 ko 6.
x=\frac{2\sqrt{3}+6}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{3}.
x=\sqrt{3}+3
Whakawehe 6+2\sqrt{3} ki te 2.
x=\frac{6-2\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 6.
x=3-\sqrt{3}
Whakawehe 6-2\sqrt{3} ki te 2.
x^{2}-6x+6=\left(x-\left(\sqrt{3}+3\right)\right)\left(x-\left(3-\sqrt{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3+\sqrt{3} mō te x_{1} me te 3-\sqrt{3} mō te x_{2}.