Whakaoti mō x
x=-50
x=100
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-50 ab=-5000
Hei whakaoti i te whārite, whakatauwehea te x^{2}-50x-5000 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -5000.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Tātaihia te tapeke mō ia takirua.
a=-100 b=50
Ko te otinga te takirua ka hoatu i te tapeke -50.
\left(x-100\right)\left(x+50\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=100 x=-50
Hei kimi otinga whārite, me whakaoti te x-100=0 me te x+50=0.
a+b=-50 ab=1\left(-5000\right)=-5000
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-5000. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -5000.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Tātaihia te tapeke mō ia takirua.
a=-100 b=50
Ko te otinga te takirua ka hoatu i te tapeke -50.
\left(x^{2}-100x\right)+\left(50x-5000\right)
Tuhia anō te x^{2}-50x-5000 hei \left(x^{2}-100x\right)+\left(50x-5000\right).
x\left(x-100\right)+50\left(x-100\right)
Tauwehea te x i te tuatahi me te 50 i te rōpū tuarua.
\left(x-100\right)\left(x+50\right)
Whakatauwehea atu te kīanga pātahi x-100 mā te whakamahi i te āhuatanga tātai tohatoha.
x=100 x=-50
Hei kimi otinga whārite, me whakaoti te x-100=0 me te x+50=0.
x^{2}-50x-5000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-5000\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -50 mō b, me -5000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-5000\right)}}{2}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500+20000}}{2}
Whakareatia -4 ki te -5000.
x=\frac{-\left(-50\right)±\sqrt{22500}}{2}
Tāpiri 2500 ki te 20000.
x=\frac{-\left(-50\right)±150}{2}
Tuhia te pūtakerua o te 22500.
x=\frac{50±150}{2}
Ko te tauaro o -50 ko 50.
x=\frac{200}{2}
Nā, me whakaoti te whārite x=\frac{50±150}{2} ina he tāpiri te ±. Tāpiri 50 ki te 150.
x=100
Whakawehe 200 ki te 2.
x=-\frac{100}{2}
Nā, me whakaoti te whārite x=\frac{50±150}{2} ina he tango te ±. Tango 150 mai i 50.
x=-50
Whakawehe -100 ki te 2.
x=100 x=-50
Kua oti te whārite te whakatau.
x^{2}-50x-5000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-50x-5000-\left(-5000\right)=-\left(-5000\right)
Me tāpiri 5000 ki ngā taha e rua o te whārite.
x^{2}-50x=-\left(-5000\right)
Mā te tango i te -5000 i a ia ake anō ka toe ko te 0.
x^{2}-50x=5000
Tango -5000 mai i 0.
x^{2}-50x+\left(-25\right)^{2}=5000+\left(-25\right)^{2}
Whakawehea te -50, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -25. Nā, tāpiria te pūrua o te -25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-50x+625=5000+625
Pūrua -25.
x^{2}-50x+625=5625
Tāpiri 5000 ki te 625.
\left(x-25\right)^{2}=5625
Tauwehea x^{2}-50x+625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{5625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-25=75 x-25=-75
Whakarūnātia.
x=100 x=-50
Me tāpiri 25 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}