Whakaoti mō x
x=\sqrt{3}+3\approx 4.732050808
x=3-\sqrt{3}\approx 1.267949192
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-5x+6-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-6x+6=0
Pahekotia te -5x me -x, ka -6x.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2}
Whakareatia -4 ki te 6.
x=\frac{-\left(-6\right)±\sqrt{12}}{2}
Tāpiri 36 ki te -24.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{6±2\sqrt{3}}{2}
Ko te tauaro o -6 ko 6.
x=\frac{2\sqrt{3}+6}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{3}.
x=\sqrt{3}+3
Whakawehe 6+2\sqrt{3} ki te 2.
x=\frac{6-2\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 6.
x=3-\sqrt{3}
Whakawehe 6-2\sqrt{3} ki te 2.
x=\sqrt{3}+3 x=3-\sqrt{3}
Kua oti te whārite te whakatau.
x^{2}-5x+6-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-6x+6=0
Pahekotia te -5x me -x, ka -6x.
x^{2}-6x=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-6x+\left(-3\right)^{2}=-6+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-6+9
Pūrua -3.
x^{2}-6x+9=3
Tāpiri -6 ki te 9.
\left(x-3\right)^{2}=3
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=\sqrt{3} x-3=-\sqrt{3}
Whakarūnātia.
x=\sqrt{3}+3 x=3-\sqrt{3}
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}