Whakaoti mō x
x=69
x=420
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-489x+28980=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-489\right)±\sqrt{\left(-489\right)^{2}-4\times 28980}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -489 mō b, me 28980 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-489\right)±\sqrt{239121-4\times 28980}}{2}
Pūrua -489.
x=\frac{-\left(-489\right)±\sqrt{239121-115920}}{2}
Whakareatia -4 ki te 28980.
x=\frac{-\left(-489\right)±\sqrt{123201}}{2}
Tāpiri 239121 ki te -115920.
x=\frac{-\left(-489\right)±351}{2}
Tuhia te pūtakerua o te 123201.
x=\frac{489±351}{2}
Ko te tauaro o -489 ko 489.
x=\frac{840}{2}
Nā, me whakaoti te whārite x=\frac{489±351}{2} ina he tāpiri te ±. Tāpiri 489 ki te 351.
x=420
Whakawehe 840 ki te 2.
x=\frac{138}{2}
Nā, me whakaoti te whārite x=\frac{489±351}{2} ina he tango te ±. Tango 351 mai i 489.
x=69
Whakawehe 138 ki te 2.
x=420 x=69
Kua oti te whārite te whakatau.
x^{2}-489x+28980=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-489x+28980-28980=-28980
Me tango 28980 mai i ngā taha e rua o te whārite.
x^{2}-489x=-28980
Mā te tango i te 28980 i a ia ake anō ka toe ko te 0.
x^{2}-489x+\left(-\frac{489}{2}\right)^{2}=-28980+\left(-\frac{489}{2}\right)^{2}
Whakawehea te -489, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{489}{2}. Nā, tāpiria te pūrua o te -\frac{489}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-489x+\frac{239121}{4}=-28980+\frac{239121}{4}
Pūruatia -\frac{489}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-489x+\frac{239121}{4}=\frac{123201}{4}
Tāpiri -28980 ki te \frac{239121}{4}.
\left(x-\frac{489}{2}\right)^{2}=\frac{123201}{4}
Tauwehea x^{2}-489x+\frac{239121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{489}{2}\right)^{2}}=\sqrt{\frac{123201}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{489}{2}=\frac{351}{2} x-\frac{489}{2}=-\frac{351}{2}
Whakarūnātia.
x=420 x=69
Me tāpiri \frac{489}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}