Whakaoti mō x
x=20\sqrt{3}+20\approx 54.641016151
x=20-20\sqrt{3}\approx -14.641016151
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-40x-800=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-800\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -40 mō b, me -800 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-800\right)}}{2}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600+3200}}{2}
Whakareatia -4 ki te -800.
x=\frac{-\left(-40\right)±\sqrt{4800}}{2}
Tāpiri 1600 ki te 3200.
x=\frac{-\left(-40\right)±40\sqrt{3}}{2}
Tuhia te pūtakerua o te 4800.
x=\frac{40±40\sqrt{3}}{2}
Ko te tauaro o -40 ko 40.
x=\frac{40\sqrt{3}+40}{2}
Nā, me whakaoti te whārite x=\frac{40±40\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 40 ki te 40\sqrt{3}.
x=20\sqrt{3}+20
Whakawehe 40+40\sqrt{3} ki te 2.
x=\frac{40-40\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{40±40\sqrt{3}}{2} ina he tango te ±. Tango 40\sqrt{3} mai i 40.
x=20-20\sqrt{3}
Whakawehe 40-40\sqrt{3} ki te 2.
x=20\sqrt{3}+20 x=20-20\sqrt{3}
Kua oti te whārite te whakatau.
x^{2}-40x-800=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-40x-800-\left(-800\right)=-\left(-800\right)
Me tāpiri 800 ki ngā taha e rua o te whārite.
x^{2}-40x=-\left(-800\right)
Mā te tango i te -800 i a ia ake anō ka toe ko te 0.
x^{2}-40x=800
Tango -800 mai i 0.
x^{2}-40x+\left(-20\right)^{2}=800+\left(-20\right)^{2}
Whakawehea te -40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -20. Nā, tāpiria te pūrua o te -20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-40x+400=800+400
Pūrua -20.
x^{2}-40x+400=1200
Tāpiri 800 ki te 400.
\left(x-20\right)^{2}=1200
Tauwehea x^{2}-40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{1200}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-20=20\sqrt{3} x-20=-20\sqrt{3}
Whakarūnātia.
x=20\sqrt{3}+20 x=20-20\sqrt{3}
Me tāpiri 20 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}