Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-4 ab=1\left(-21\right)=-21
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-21 3,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
1-21=-20 3-7=-4
Tātaihia te tapeke mō ia takirua.
a=-7 b=3
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-7x\right)+\left(3x-21\right)
Tuhia anō te x^{2}-4x-21 hei \left(x^{2}-7x\right)+\left(3x-21\right).
x\left(x-7\right)+3\left(x-7\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-7\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-4x-21=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-21\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-21\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2}
Whakareatia -4 ki te -21.
x=\frac{-\left(-4\right)±\sqrt{100}}{2}
Tāpiri 16 ki te 84.
x=\frac{-\left(-4\right)±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{4±10}{2}
Ko te tauaro o -4 ko 4.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{4±10}{2} ina he tāpiri te ±. Tāpiri 4 ki te 10.
x=7
Whakawehe 14 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{4±10}{2} ina he tango te ±. Tango 10 mai i 4.
x=-3
Whakawehe -6 ki te 2.
x^{2}-4x-21=\left(x-7\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te -3 mō te x_{2}.
x^{2}-4x-21=\left(x-7\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.