Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(-3x^{2}+4+8x)
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}+8x+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{64-4\left(-3\right)\times 4}}{2\left(-3\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+12\times 4}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-8±\sqrt{64+48}}{2\left(-3\right)}
Whakareatia 12 ki te 4.
x=\frac{-8±\sqrt{112}}{2\left(-3\right)}
Tāpiri 64 ki te 48.
x=\frac{-8±4\sqrt{7}}{2\left(-3\right)}
Tuhia te pūtakerua o te 112.
x=\frac{-8±4\sqrt{7}}{-6}
Whakareatia 2 ki te -3.
x=\frac{4\sqrt{7}-8}{-6}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{7}}{-6} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{7}.
x=\frac{4-2\sqrt{7}}{3}
Whakawehe -8+4\sqrt{7} ki te -6.
x=\frac{-4\sqrt{7}-8}{-6}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{7}}{-6} ina he tango te ±. Tango 4\sqrt{7} mai i -8.
x=\frac{2\sqrt{7}+4}{3}
Whakawehe -8-4\sqrt{7} ki te -6.
-3x^{2}+8x+4=-3\left(x-\frac{4-2\sqrt{7}}{3}\right)\left(x-\frac{2\sqrt{7}+4}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4-2\sqrt{7}}{3} mō te x_{1} me te \frac{4+2\sqrt{7}}{3} mō te x_{2}.
-3x^{2}+4+8x
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.