Whakaoti mō x
x=6
x=-6
Graph
Pātaitai
Polynomial
x ^ { 2 } - 36 = 0
Tohaina
Kua tāruatia ki te papatopenga
\left(x-6\right)\left(x+6\right)=0
Whakaarohia te x^{2}-36. Tuhia anō te x^{2}-36 hei x^{2}-6^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+6=0.
x^{2}=36
Me tāpiri te 36 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=6 x=-6
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}-36=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{144}}{2}
Whakareatia -4 ki te -36.
x=\frac{0±12}{2}
Tuhia te pūtakerua o te 144.
x=6
Nā, me whakaoti te whārite x=\frac{0±12}{2} ina he tāpiri te ±. Whakawehe 12 ki te 2.
x=-6
Nā, me whakaoti te whārite x=\frac{0±12}{2} ina he tango te ±. Whakawehe -12 ki te 2.
x=6 x=-6
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}