Whakaoti mō x
x = \frac{\sqrt{1016841} + 379}{200} \approx 6.936926715
x=\frac{379-\sqrt{1016841}}{200}\approx -3.146926715
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3.79x-18.8=3.03
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-3.79x-18.8-3.03=3.03-3.03
Me tango 3.03 mai i ngā taha e rua o te whārite.
x^{2}-3.79x-18.8-3.03=0
Mā te tango i te 3.03 i a ia ake anō ka toe ko te 0.
x^{2}-3.79x-21.83=0
Tango 3.03 mai i -18.8 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-3.79\right)±\sqrt{\left(-3.79\right)^{2}-4\left(-21.83\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3.79 mō b, me -21.83 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3.79\right)±\sqrt{14.3641-4\left(-21.83\right)}}{2}
Pūruatia -3.79 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-3.79\right)±\sqrt{14.3641+87.32}}{2}
Whakareatia -4 ki te -21.83.
x=\frac{-\left(-3.79\right)±\sqrt{101.6841}}{2}
Tāpiri 14.3641 ki te 87.32 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-3.79\right)±\frac{\sqrt{1016841}}{100}}{2}
Tuhia te pūtakerua o te 101.6841.
x=\frac{3.79±\frac{\sqrt{1016841}}{100}}{2}
Ko te tauaro o -3.79 ko 3.79.
x=\frac{\sqrt{1016841}+379}{2\times 100}
Nā, me whakaoti te whārite x=\frac{3.79±\frac{\sqrt{1016841}}{100}}{2} ina he tāpiri te ±. Tāpiri 3.79 ki te \frac{\sqrt{1016841}}{100}.
x=\frac{\sqrt{1016841}+379}{200}
Whakawehe \frac{379+\sqrt{1016841}}{100} ki te 2.
x=\frac{379-\sqrt{1016841}}{2\times 100}
Nā, me whakaoti te whārite x=\frac{3.79±\frac{\sqrt{1016841}}{100}}{2} ina he tango te ±. Tango \frac{\sqrt{1016841}}{100} mai i 3.79.
x=\frac{379-\sqrt{1016841}}{200}
Whakawehe \frac{379-\sqrt{1016841}}{100} ki te 2.
x=\frac{\sqrt{1016841}+379}{200} x=\frac{379-\sqrt{1016841}}{200}
Kua oti te whārite te whakatau.
x^{2}-3.79x-18.8=3.03
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-3.79x-18.8-\left(-18.8\right)=3.03-\left(-18.8\right)
Me tāpiri 18.8 ki ngā taha e rua o te whārite.
x^{2}-3.79x=3.03-\left(-18.8\right)
Mā te tango i te -18.8 i a ia ake anō ka toe ko te 0.
x^{2}-3.79x=21.83
Tango -18.8 mai i 3.03 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x^{2}-3.79x+\left(-1.895\right)^{2}=21.83+\left(-1.895\right)^{2}
Whakawehea te -3.79, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1.895. Nā, tāpiria te pūrua o te -1.895 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3.79x+3.591025=21.83+3.591025
Pūruatia -1.895 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3.79x+3.591025=25.421025
Tāpiri 21.83 ki te 3.591025 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-1.895\right)^{2}=25.421025
Tauwehea te x^{2}-3.79x+3.591025. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.895\right)^{2}}=\sqrt{25.421025}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1.895=\frac{\sqrt{1016841}}{200} x-1.895=-\frac{\sqrt{1016841}}{200}
Whakarūnātia.
x=\frac{\sqrt{1016841}+379}{200} x=\frac{379-\sqrt{1016841}}{200}
Me tāpiri 1.895 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}