Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-3x-18=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-18\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -3 mō te b, me te -18 mō te c i te ture pūrua.
x=\frac{3±9}{2}
Mahia ngā tātaitai.
x=6 x=-3
Whakaotia te whārite x=\frac{3±9}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-6\right)\left(x+3\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-6>0 x+3<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-6 me te x+3. Whakaarohia te tauira ina he tōrunga te x-6 he tōraro te x+3.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x+3>0 x-6<0
Whakaarohia te tauira ina he tōrunga te x+3 he tōraro te x-6.
x\in \left(-3,6\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(-3,6\right).
x\in \left(-3,6\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.