Whakaoti mō x
x=-\frac{3}{4}=-0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3x-3-2x\left(x+1\right)=\left(-x\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+1.
x^{2}-3x-3-2x\left(x+1\right)=\left(-x\right)x-x
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+1.
x^{2}-3x-3-2x\left(x+1\right)-\left(-x\right)x=-x
Tangohia te \left(-x\right)x mai i ngā taha e rua.
x^{2}-3x-3-2x\left(x+1\right)-\left(-x\right)x+x=0
Me tāpiri te x ki ngā taha e rua.
x^{2}-3x-3-2x\left(x+1\right)-\left(-xx\right)+x=0
Whakareatia te -1 ki te 2, ka -2.
x^{2}-3x-3-2x^{2}-2x-\left(-xx\right)+x=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x+1.
-x^{2}-3x-3-2x-\left(-xx\right)+x=0
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-5x-3-\left(-xx\right)+x=0
Pahekotia te -3x me -2x, ka -5x.
-x^{2}-5x-3-\left(-x^{2}\right)+x=0
Whakareatia te x ki te x, ka x^{2}.
-x^{2}-5x-3+x^{2}+x=0
Whakareatia te -1 ki te -1, ka 1.
-5x-3+x=0
Pahekotia te -x^{2} me x^{2}, ka 0.
-4x-3=0
Pahekotia te -5x me x, ka -4x.
-4x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{3}{-4}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{3}{4}
Ka taea te hautanga \frac{3}{-4} te tuhi anō ko -\frac{3}{4} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}