Whakaoti mō x
x=-12
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-28 ab=-480
Hei whakaoti i te whārite, whakatauwehea te x^{2}-28x-480 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-480 2,-240 3,-160 4,-120 5,-96 6,-80 8,-60 10,-48 12,-40 15,-32 16,-30 20,-24
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -480.
1-480=-479 2-240=-238 3-160=-157 4-120=-116 5-96=-91 6-80=-74 8-60=-52 10-48=-38 12-40=-28 15-32=-17 16-30=-14 20-24=-4
Tātaihia te tapeke mō ia takirua.
a=-40 b=12
Ko te otinga te takirua ka hoatu i te tapeke -28.
\left(x-40\right)\left(x+12\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=40 x=-12
Hei kimi otinga whārite, me whakaoti te x-40=0 me te x+12=0.
a+b=-28 ab=1\left(-480\right)=-480
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-480. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-480 2,-240 3,-160 4,-120 5,-96 6,-80 8,-60 10,-48 12,-40 15,-32 16,-30 20,-24
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -480.
1-480=-479 2-240=-238 3-160=-157 4-120=-116 5-96=-91 6-80=-74 8-60=-52 10-48=-38 12-40=-28 15-32=-17 16-30=-14 20-24=-4
Tātaihia te tapeke mō ia takirua.
a=-40 b=12
Ko te otinga te takirua ka hoatu i te tapeke -28.
\left(x^{2}-40x\right)+\left(12x-480\right)
Tuhia anō te x^{2}-28x-480 hei \left(x^{2}-40x\right)+\left(12x-480\right).
x\left(x-40\right)+12\left(x-40\right)
Tauwehea te x i te tuatahi me te 12 i te rōpū tuarua.
\left(x-40\right)\left(x+12\right)
Whakatauwehea atu te kīanga pātahi x-40 mā te whakamahi i te āhuatanga tātai tohatoha.
x=40 x=-12
Hei kimi otinga whārite, me whakaoti te x-40=0 me te x+12=0.
x^{2}-28x-480=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\left(-480\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -28 mō b, me -480 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\left(-480\right)}}{2}
Pūrua -28.
x=\frac{-\left(-28\right)±\sqrt{784+1920}}{2}
Whakareatia -4 ki te -480.
x=\frac{-\left(-28\right)±\sqrt{2704}}{2}
Tāpiri 784 ki te 1920.
x=\frac{-\left(-28\right)±52}{2}
Tuhia te pūtakerua o te 2704.
x=\frac{28±52}{2}
Ko te tauaro o -28 ko 28.
x=\frac{80}{2}
Nā, me whakaoti te whārite x=\frac{28±52}{2} ina he tāpiri te ±. Tāpiri 28 ki te 52.
x=40
Whakawehe 80 ki te 2.
x=-\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{28±52}{2} ina he tango te ±. Tango 52 mai i 28.
x=-12
Whakawehe -24 ki te 2.
x=40 x=-12
Kua oti te whārite te whakatau.
x^{2}-28x-480=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-28x-480-\left(-480\right)=-\left(-480\right)
Me tāpiri 480 ki ngā taha e rua o te whārite.
x^{2}-28x=-\left(-480\right)
Mā te tango i te -480 i a ia ake anō ka toe ko te 0.
x^{2}-28x=480
Tango -480 mai i 0.
x^{2}-28x+\left(-14\right)^{2}=480+\left(-14\right)^{2}
Whakawehea te -28, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -14. Nā, tāpiria te pūrua o te -14 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-28x+196=480+196
Pūrua -14.
x^{2}-28x+196=676
Tāpiri 480 ki te 196.
\left(x-14\right)^{2}=676
Tauwehea x^{2}-28x+196. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{676}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-14=26 x-14=-26
Whakarūnātia.
x=40 x=-12
Me tāpiri 14 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}