Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-25x+104+7x=-3
Me tāpiri te 7x ki ngā taha e rua.
x^{2}-18x+104=-3
Pahekotia te -25x me 7x, ka -18x.
x^{2}-18x+104+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-18x+107=0
Tāpirihia te 104 ki te 3, ka 107.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 107}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -18 mō b, me 107 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 107}}{2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-428}}{2}
Whakareatia -4 ki te 107.
x=\frac{-\left(-18\right)±\sqrt{-104}}{2}
Tāpiri 324 ki te -428.
x=\frac{-\left(-18\right)±2\sqrt{26}i}{2}
Tuhia te pūtakerua o te -104.
x=\frac{18±2\sqrt{26}i}{2}
Ko te tauaro o -18 ko 18.
x=\frac{18+2\sqrt{26}i}{2}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{26}i}{2} ina he tāpiri te ±. Tāpiri 18 ki te 2i\sqrt{26}.
x=9+\sqrt{26}i
Whakawehe 18+2i\sqrt{26} ki te 2.
x=\frac{-2\sqrt{26}i+18}{2}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{26}i}{2} ina he tango te ±. Tango 2i\sqrt{26} mai i 18.
x=-\sqrt{26}i+9
Whakawehe 18-2i\sqrt{26} ki te 2.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
Kua oti te whārite te whakatau.
x^{2}-25x+104+7x=-3
Me tāpiri te 7x ki ngā taha e rua.
x^{2}-18x+104=-3
Pahekotia te -25x me 7x, ka -18x.
x^{2}-18x=-3-104
Tangohia te 104 mai i ngā taha e rua.
x^{2}-18x=-107
Tangohia te 104 i te -3, ka -107.
x^{2}-18x+\left(-9\right)^{2}=-107+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-18x+81=-107+81
Pūrua -9.
x^{2}-18x+81=-26
Tāpiri -107 ki te 81.
\left(x-9\right)^{2}=-26
Tauwehea x^{2}-18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-26}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-9=\sqrt{26}i x-9=-\sqrt{26}i
Whakarūnātia.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
Me tāpiri 9 ki ngā taha e rua o te whārite.