Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-24x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2}}{2}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-8}}{2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-24\right)±\sqrt{568}}{2}
Tāpiri 576 ki te -8.
x=\frac{-\left(-24\right)±2\sqrt{142}}{2}
Tuhia te pūtakerua o te 568.
x=\frac{24±2\sqrt{142}}{2}
Ko te tauaro o -24 ko 24.
x=\frac{2\sqrt{142}+24}{2}
Nā, me whakaoti te whārite x=\frac{24±2\sqrt{142}}{2} ina he tāpiri te ±. Tāpiri 24 ki te 2\sqrt{142}.
x=\sqrt{142}+12
Whakawehe 24+2\sqrt{142} ki te 2.
x=\frac{24-2\sqrt{142}}{2}
Nā, me whakaoti te whārite x=\frac{24±2\sqrt{142}}{2} ina he tango te ±. Tango 2\sqrt{142} mai i 24.
x=12-\sqrt{142}
Whakawehe 24-2\sqrt{142} ki te 2.
x^{2}-24x+2=\left(x-\left(\sqrt{142}+12\right)\right)\left(x-\left(12-\sqrt{142}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 12+\sqrt{142} mō te x_{1} me te 12-\sqrt{142} mō te x_{2}.