Whakaoti mō x
x=\frac{\sqrt{13435}}{10}+11.5\approx 23.090944741
x=-\frac{\sqrt{13435}}{10}+11.5\approx -0.090944741
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-23x-2.1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\left(-2.1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -23 mō b, me -2.1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-23\right)±\sqrt{529-4\left(-2.1\right)}}{2}
Pūrua -23.
x=\frac{-\left(-23\right)±\sqrt{529+8.4}}{2}
Whakareatia -4 ki te -2.1.
x=\frac{-\left(-23\right)±\sqrt{537.4}}{2}
Tāpiri 529 ki te 8.4.
x=\frac{-\left(-23\right)±\frac{\sqrt{13435}}{5}}{2}
Tuhia te pūtakerua o te 537.4.
x=\frac{23±\frac{\sqrt{13435}}{5}}{2}
Ko te tauaro o -23 ko 23.
x=\frac{\frac{\sqrt{13435}}{5}+23}{2}
Nā, me whakaoti te whārite x=\frac{23±\frac{\sqrt{13435}}{5}}{2} ina he tāpiri te ±. Tāpiri 23 ki te \frac{\sqrt{13435}}{5}.
x=\frac{\sqrt{13435}}{10}+\frac{23}{2}
Whakawehe 23+\frac{\sqrt{13435}}{5} ki te 2.
x=\frac{-\frac{\sqrt{13435}}{5}+23}{2}
Nā, me whakaoti te whārite x=\frac{23±\frac{\sqrt{13435}}{5}}{2} ina he tango te ±. Tango \frac{\sqrt{13435}}{5} mai i 23.
x=-\frac{\sqrt{13435}}{10}+\frac{23}{2}
Whakawehe 23-\frac{\sqrt{13435}}{5} ki te 2.
x=\frac{\sqrt{13435}}{10}+\frac{23}{2} x=-\frac{\sqrt{13435}}{10}+\frac{23}{2}
Kua oti te whārite te whakatau.
x^{2}-23x-2.1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-23x-2.1-\left(-2.1\right)=-\left(-2.1\right)
Me tāpiri 2.1 ki ngā taha e rua o te whārite.
x^{2}-23x=-\left(-2.1\right)
Mā te tango i te -2.1 i a ia ake anō ka toe ko te 0.
x^{2}-23x=2.1
Tango -2.1 mai i 0.
x^{2}-23x+\left(-\frac{23}{2}\right)^{2}=2.1+\left(-\frac{23}{2}\right)^{2}
Whakawehea te -23, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{23}{2}. Nā, tāpiria te pūrua o te -\frac{23}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-23x+\frac{529}{4}=2.1+\frac{529}{4}
Pūruatia -\frac{23}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-23x+\frac{529}{4}=\frac{2687}{20}
Tāpiri 2.1 ki te \frac{529}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{23}{2}\right)^{2}=\frac{2687}{20}
Tauwehea x^{2}-23x+\frac{529}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{2}\right)^{2}}=\sqrt{\frac{2687}{20}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{23}{2}=\frac{\sqrt{13435}}{10} x-\frac{23}{2}=-\frac{\sqrt{13435}}{10}
Whakarūnātia.
x=\frac{\sqrt{13435}}{10}+\frac{23}{2} x=-\frac{\sqrt{13435}}{10}+\frac{23}{2}
Me tāpiri \frac{23}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}