Whakaoti mō y
y=\frac{x^{2}-2x-5}{6}
Whakaoti mō x (complex solution)
x=\sqrt{6\left(y+1\right)}+1
x=-\sqrt{6\left(y+1\right)}+1
Whakaoti mō x
x=\sqrt{6\left(y+1\right)}+1
x=-\sqrt{6\left(y+1\right)}+1\text{, }y\geq -1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-6y-5=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-6y-5=-x^{2}+2x
Me tāpiri te 2x ki ngā taha e rua.
-6y=-x^{2}+2x+5
Me tāpiri te 5 ki ngā taha e rua.
-6y=5+2x-x^{2}
He hanga arowhānui tō te whārite.
\frac{-6y}{-6}=\frac{5+2x-x^{2}}{-6}
Whakawehea ngā taha e rua ki te -6.
y=\frac{5+2x-x^{2}}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
y=\frac{x^{2}}{6}-\frac{x}{3}-\frac{5}{6}
Whakawehe -x^{2}+2x+5 ki te -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}