Whakaoti mō x
x=2
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+6=2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}=2-6
Tangohia te 6 mai i ngā taha e rua.
-x^{2}=-4
Tangohia te 6 i te 2, ka -4.
x^{2}=\frac{-4}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=4
Ka taea te hautanga \frac{-4}{-1} te whakamāmā ki te 4 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-x^{2}+6=2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+6-2=0
Tangohia te 2 mai i ngā taha e rua.
-x^{2}+4=0
Tangohia te 2 i te 6, ka 4.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 4}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{16}}{2\left(-1\right)}
Whakareatia 4 ki te 4.
x=\frac{0±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
x=\frac{0±4}{-2}
Whakareatia 2 ki te -1.
x=-2
Nā, me whakaoti te whārite x=\frac{0±4}{-2} ina he tāpiri te ±. Whakawehe 4 ki te -2.
x=2
Nā, me whakaoti te whārite x=\frac{0±4}{-2} ina he tango te ±. Whakawehe -4 ki te -2.
x=-2 x=2
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}