Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}+6=2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}=2-6
Tangohia te 6 mai i ngā taha e rua.
-x^{2}=-4
Tangohia te 6 i te 2, ka -4.
x^{2}=\frac{-4}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=4
Ka taea te hautanga \frac{-4}{-1} te whakamāmā ki te 4 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-x^{2}+6=2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+6-2=0
Tangohia te 2 mai i ngā taha e rua.
-x^{2}+4=0
Tangohia te 2 i te 6, ka 4.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 4}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{16}}{2\left(-1\right)}
Whakareatia 4 ki te 4.
x=\frac{0±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
x=\frac{0±4}{-2}
Whakareatia 2 ki te -1.
x=-2
Nā, me whakaoti te whārite x=\frac{0±4}{-2} ina he tāpiri te ±. Whakawehe 4 ki te -2.
x=2
Nā, me whakaoti te whārite x=\frac{0±4}{-2} ina he tango te ±. Whakawehe -4 ki te -2.
x=-2 x=2
Kua oti te whārite te whakatau.