Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2x+7=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 7}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te 7 mō te c i te ture pūrua.
x=\frac{2±\sqrt{-24}}{2}
Mahia ngā tātaitai.
0^{2}-2\times 0+7=7
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā. He rite te tohu o te kīanga x^{2}-2x+7 ki tā tētahi x. Kia whakatau i te tohu, tātaitia te uara o te kīanga mō x=0.
x\in \mathrm{R}
Ko te uara o te kīanga x^{2}-2x+7 he tōrunga i ngā wā katoa. E mau ana te koreōrite mō x\in \mathrm{R}.