Tīpoka ki ngā ihirangi matua
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō k
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2\left(k+1\right)x+4k=0
Whakareatia te -1 ki te 2, ka -2.
x^{2}+\left(-2k-2\right)x+4k=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te k+1.
x^{2}-2kx-2x+4k=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2k-2 ki te x.
-2kx-2x+4k=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2kx+4k=-x^{2}+2x
Me tāpiri te 2x ki ngā taha e rua.
\left(-2x+4\right)k=-x^{2}+2x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(4-2x\right)k=2x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(4-2x\right)k}{4-2x}=\frac{x\left(2-x\right)}{4-2x}
Whakawehea ngā taha e rua ki te -2x+4.
k=\frac{x\left(2-x\right)}{4-2x}
Mā te whakawehe ki te -2x+4 ka wetekia te whakareanga ki te -2x+4.
k=\frac{x}{2}
Whakawehe x\left(2-x\right) ki te -2x+4.
x^{2}-2\left(k+1\right)x+4k=0
Whakareatia te -1 ki te 2, ka -2.
x^{2}+\left(-2k-2\right)x+4k=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te k+1.
x^{2}-2kx-2x+4k=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2k-2 ki te x.
-2kx-2x+4k=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2kx+4k=-x^{2}+2x
Me tāpiri te 2x ki ngā taha e rua.
\left(-2x+4\right)k=-x^{2}+2x
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(4-2x\right)k=2x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(4-2x\right)k}{4-2x}=\frac{x\left(2-x\right)}{4-2x}
Whakawehea ngā taha e rua ki te -2x+4.
k=\frac{x\left(2-x\right)}{4-2x}
Mā te whakawehe ki te -2x+4 ka wetekia te whakareanga ki te -2x+4.
k=\frac{x}{2}
Whakawehe x\left(2-x\right) ki te -2x+4.