Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+\left(-2-2i\right)x+2i=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{2+2i±\sqrt{\left(-2-2i\right)^{2}-4\times \left(2i\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2-2i mō b, me 2i mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{2+2i±\sqrt{8i-4\times \left(2i\right)}}{2}
Pūrua -2-2i.
x=\frac{2+2i±\sqrt{8i-8i}}{2}
Whakareatia -4 ki te 2i.
x=\frac{2+2i±\sqrt{0}}{2}
Tāpiri 8i ki te -8i.
x=-\frac{-2-2i}{2}
Tuhia te pūtakerua o te 0.
x=1+i
Whakawehe 2+2i ki te 2.
x^{2}+\left(-2-2i\right)x+2i=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\left(x+\left(-1-i\right)\right)^{2}=0
Tauwehea x^{2}+\left(-2-2i\right)x+2i. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\left(-1-i\right)\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\left(-1-i\right)=0 x+\left(-1-i\right)=0
Whakarūnātia.
x=1+i x=1+i
Me tāpiri 1+i ki ngā taha e rua o te whārite.
x=1+i
Kua oti te whārite te whakatau. He ōrite ngā whakatau.