Whakaoti mō x
x=10\sqrt{61}+90\approx 168.102496759
x=90-10\sqrt{61}\approx 11.897503241
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-180x+2000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 2000}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -180 mō b, me 2000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 2000}}{2}
Pūrua -180.
x=\frac{-\left(-180\right)±\sqrt{32400-8000}}{2}
Whakareatia -4 ki te 2000.
x=\frac{-\left(-180\right)±\sqrt{24400}}{2}
Tāpiri 32400 ki te -8000.
x=\frac{-\left(-180\right)±20\sqrt{61}}{2}
Tuhia te pūtakerua o te 24400.
x=\frac{180±20\sqrt{61}}{2}
Ko te tauaro o -180 ko 180.
x=\frac{20\sqrt{61}+180}{2}
Nā, me whakaoti te whārite x=\frac{180±20\sqrt{61}}{2} ina he tāpiri te ±. Tāpiri 180 ki te 20\sqrt{61}.
x=10\sqrt{61}+90
Whakawehe 180+20\sqrt{61} ki te 2.
x=\frac{180-20\sqrt{61}}{2}
Nā, me whakaoti te whārite x=\frac{180±20\sqrt{61}}{2} ina he tango te ±. Tango 20\sqrt{61} mai i 180.
x=90-10\sqrt{61}
Whakawehe 180-20\sqrt{61} ki te 2.
x=10\sqrt{61}+90 x=90-10\sqrt{61}
Kua oti te whārite te whakatau.
x^{2}-180x+2000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-180x+2000-2000=-2000
Me tango 2000 mai i ngā taha e rua o te whārite.
x^{2}-180x=-2000
Mā te tango i te 2000 i a ia ake anō ka toe ko te 0.
x^{2}-180x+\left(-90\right)^{2}=-2000+\left(-90\right)^{2}
Whakawehea te -180, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -90. Nā, tāpiria te pūrua o te -90 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-180x+8100=-2000+8100
Pūrua -90.
x^{2}-180x+8100=6100
Tāpiri -2000 ki te 8100.
\left(x-90\right)^{2}=6100
Tauwehea x^{2}-180x+8100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-90\right)^{2}}=\sqrt{6100}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-90=10\sqrt{61} x-90=-10\sqrt{61}
Whakarūnātia.
x=10\sqrt{61}+90 x=90-10\sqrt{61}
Me tāpiri 90 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}