Whakaoti mō x
x=2\sqrt{23}+9\approx 18.591663047
x=9-2\sqrt{23}\approx -0.591663047
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-18x-18=-7
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}-18x-18-\left(-7\right)=-7-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
x^{2}-18x-18-\left(-7\right)=0
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
x^{2}-18x-11=0
Tango -7 mai i -18.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-11\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -18 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-11\right)}}{2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324+44}}{2}
Whakareatia -4 ki te -11.
x=\frac{-\left(-18\right)±\sqrt{368}}{2}
Tāpiri 324 ki te 44.
x=\frac{-\left(-18\right)±4\sqrt{23}}{2}
Tuhia te pūtakerua o te 368.
x=\frac{18±4\sqrt{23}}{2}
Ko te tauaro o -18 ko 18.
x=\frac{4\sqrt{23}+18}{2}
Nā, me whakaoti te whārite x=\frac{18±4\sqrt{23}}{2} ina he tāpiri te ±. Tāpiri 18 ki te 4\sqrt{23}.
x=2\sqrt{23}+9
Whakawehe 18+4\sqrt{23} ki te 2.
x=\frac{18-4\sqrt{23}}{2}
Nā, me whakaoti te whārite x=\frac{18±4\sqrt{23}}{2} ina he tango te ±. Tango 4\sqrt{23} mai i 18.
x=9-2\sqrt{23}
Whakawehe 18-4\sqrt{23} ki te 2.
x=2\sqrt{23}+9 x=9-2\sqrt{23}
Kua oti te whārite te whakatau.
x^{2}-18x-18=-7
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-18x-18-\left(-18\right)=-7-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
x^{2}-18x=-7-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
x^{2}-18x=11
Tango -18 mai i -7.
x^{2}-18x+\left(-9\right)^{2}=11+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-18x+81=11+81
Pūrua -9.
x^{2}-18x+81=92
Tāpiri 11 ki te 81.
\left(x-9\right)^{2}=92
Tauwehea x^{2}-18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{92}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-9=2\sqrt{23} x-9=-2\sqrt{23}
Whakarūnātia.
x=2\sqrt{23}+9 x=9-2\sqrt{23}
Me tāpiri 9 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}