Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-16+5x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+4.
x^{2}+4+5x=0
Tāpirihia te -16 ki te 20, ka 4.
x^{2}+5x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=4
Hei whakaoti i te whārite, whakatauwehea te x^{2}+5x+4 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x+1\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-1 x=-4
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+4=0.
x^{2}-16+5x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+4.
x^{2}+4+5x=0
Tāpirihia te -16 ki te 20, ka 4.
x^{2}+5x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x^{2}+x\right)+\left(4x+4\right)
Tuhia anō te x^{2}+5x+4 hei \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x+1\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-1 x=-4
Hei kimi otinga whārite, me whakaoti te x+1=0 me te x+4=0.
x^{2}-16+5x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+4.
x^{2}+4+5x=0
Tāpirihia te -16 ki te 20, ka 4.
x^{2}+5x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
x=\frac{-5±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
x=\frac{-5±3}{2}
Tuhia te pūtakerua o te 9.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-5±3}{2} ina he tāpiri te ±. Tāpiri -5 ki te 3.
x=-1
Whakawehe -2 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-5±3}{2} ina he tango te ±. Tango 3 mai i -5.
x=-4
Whakawehe -8 ki te 2.
x=-1 x=-4
Kua oti te whārite te whakatau.
x^{2}-16+5x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+4.
x^{2}+4+5x=0
Tāpirihia te -16 ki te 20, ka 4.
x^{2}+5x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
x=-1 x=-4
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.