Whakaoti mō x
x=200\sqrt{1405}+7500\approx 14996.665925597
x=7500-200\sqrt{1405}\approx 3.334074403
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-15000x+50000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15000\right)±\sqrt{\left(-15000\right)^{2}-4\times 50000}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -15000 mō b, me 50000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15000\right)±\sqrt{225000000-4\times 50000}}{2}
Pūrua -15000.
x=\frac{-\left(-15000\right)±\sqrt{225000000-200000}}{2}
Whakareatia -4 ki te 50000.
x=\frac{-\left(-15000\right)±\sqrt{224800000}}{2}
Tāpiri 225000000 ki te -200000.
x=\frac{-\left(-15000\right)±400\sqrt{1405}}{2}
Tuhia te pūtakerua o te 224800000.
x=\frac{15000±400\sqrt{1405}}{2}
Ko te tauaro o -15000 ko 15000.
x=\frac{400\sqrt{1405}+15000}{2}
Nā, me whakaoti te whārite x=\frac{15000±400\sqrt{1405}}{2} ina he tāpiri te ±. Tāpiri 15000 ki te 400\sqrt{1405}.
x=200\sqrt{1405}+7500
Whakawehe 15000+400\sqrt{1405} ki te 2.
x=\frac{15000-400\sqrt{1405}}{2}
Nā, me whakaoti te whārite x=\frac{15000±400\sqrt{1405}}{2} ina he tango te ±. Tango 400\sqrt{1405} mai i 15000.
x=7500-200\sqrt{1405}
Whakawehe 15000-400\sqrt{1405} ki te 2.
x=200\sqrt{1405}+7500 x=7500-200\sqrt{1405}
Kua oti te whārite te whakatau.
x^{2}-15000x+50000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-15000x+50000-50000=-50000
Me tango 50000 mai i ngā taha e rua o te whārite.
x^{2}-15000x=-50000
Mā te tango i te 50000 i a ia ake anō ka toe ko te 0.
x^{2}-15000x+\left(-7500\right)^{2}=-50000+\left(-7500\right)^{2}
Whakawehea te -15000, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7500. Nā, tāpiria te pūrua o te -7500 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15000x+56250000=-50000+56250000
Pūrua -7500.
x^{2}-15000x+56250000=56200000
Tāpiri -50000 ki te 56250000.
\left(x-7500\right)^{2}=56200000
Tauwehea x^{2}-15000x+56250000. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7500\right)^{2}}=\sqrt{56200000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7500=200\sqrt{1405} x-7500=-200\sqrt{1405}
Whakarūnātia.
x=200\sqrt{1405}+7500 x=7500-200\sqrt{1405}
Me tāpiri 7500 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}